|Table of Contents|

How the digital economy empowers high-quality exports——analysis based on the double machine learning method(PDF)

《长安大学学报(社科版)》[ISSN:1671-6248/CN:61-1391/C]

Issue:
2023年04期
Page:
15-30
Research Field:
国际经济与贸易
Publishing date:

Info

Title:
How the digital economy empowers high-quality exports——analysis based on the double machine learning method
Author(s):
CHAO Xiaojing12 HUANG Yena2
1. Center for Studies of China Western Economic Development, Northwest University, Xi’an 710127,Shaanxi, China; 2. School of Economics and Management, Northwest University,Xi’an 710127, Shaanxi, China
Keywords:
digital economy high-quality exports double machine learning “broadband China” high-tech industry
PACS:
F752.62
DOI:
-
Abstract:
In order to study the influence of digital economy on high-quality exports and its mechanism, based on the core characteristic attribute of “de-boundary” of digital economy, this study discusses the theoretical logic of digital economy affecting high-quality exports from two paths: local market integration and innovation paradigm reshaping. By constructing the panel data set of 281 prefecture-level cities and above from 2010 to 2020, and adopting thedouble machine learning model, this paper empirically tests the action path and effect of digital economy on high-quality exports. The research believes that the development of digital economy can significantly promote high-quality exports, and this promotion is mainly realized through the integration of local markets and the reshaping of innovation paradigms. The positive impact of digital economy on high-quality exports is asymmetric among cities. Specifically, for inland areas with no obvious geographical advantages and areas with weak policy support, the driving effect of digital economy on the improvement of export quality is more obvious, which can greatly release incremental dividends. The research shows that it is necessary to accelerate the improvement of the original innovation ability of digital technology and actively promote the circulation and sharing of information and data resources to cultivate new advantages of China’s export trade. And it is also essential to continue to promote the efficient smoothness and scale expansion of the domestic market, optimize the domestic regional layout, and adopt differentiated policies to guide the high-quality development of trade for different regions.

References:

[1] 江小涓,隆国强,王金照,等.学习阐释党的二十大精神笔谈[J].中国工业经济,2022(11):5-25.
[2]裴长洪,刘洪愧.中国外贸高质量发展:基于习近平百年大变局重要论断的思考[J].经济研究,2020,55(5):4-20.
[3]周文慧,钞小静.自由贸易试验区建设推进中国高质量出口了吗?[J].经济评论,2023(2):92-106.
[4]盛斌,高疆.数字贸易:一个分析框架[J].国际贸易问题,2021(8):1-18.
[5]樊海潮,黄文静,吴彩云.贸易自由化与企业内的产品质量调整[J].中国工业经济,2022(1):93-112.
[6]符大海,鲁成浩.服务业开放促进贸易方式转型——企业层面的理论和中国经验[J].中国工业经济,2021(7):156-174.
[7]刘晴,程玲,邵智,等.融资约束、出口模式与外贸转型升级[J].经济研究,2017(5):75-88.
[8]周茂,李雨浓,姚星,等.人力资本扩张与中国城市制造业出口升级:来自高校扩招的证据 [J].管理世界,2019,35(5):64-77.
[9]钞小静,薛志欣,孙艺鸣.新型数字基础设施如何影响对外贸易升级——来自中国地级及以上城市的经验证据[J].经济科学,2020(3):46-59.
[10]SWAN T T,SWAN B Q,ZHANG Z.Exploring new internet measurements on international trade and globalhuman resources[J].Journal of economic studies,2021,48(2):428-448.
[11]DINERSTEIN M,EINAV L,LEVIN J,et al.Consumer price search and platform design in internetcommerce[J].American economic review,2018,108(7):1820-1859.
[12]蔡震坤,綦建红.工业机器人的应用是否提升了企业出口产品质量——来自中国企业数据的证据[J].国际贸易问题,2021(10):17-33.
[13]鞠雪楠,赵宣凯,孙宝文.跨境电商平台克服了哪些贸易成本?——来自“敦煌网”数据的经验证据[J].经济研究,2020(2):181-196.
[14]马述忠,房超.跨境电商与中国出口新增长——基于信息成本和规模经济的双重视角[J].经济研究,2021(6):159-176.
[15]于欢,姚莉,何欢浪.数字产品进口如何影响中国企业出口技术复杂度[J].国际贸易问题,2022(3):35-50.
[16]钞小静,沈路,薛志欣.基于形态属性的中国省域数字经济发展水平再测算[J].经济问题,2023(2):23-34.
[17]张昕蔚.数字经济条件下的创新模式演化研究 [J].经济学家,2019(7):32-39.
[18]张杰,张培丽,黄泰岩.市场分割推动了中国企业出口吗?[J].经济研究,2010,45(8):29-41.
[19]李自若,杨汝岱,黄桂田.内贸成本、外贸成本与畅通国内大循环[J].中国工业经济,2022(2):61-79.
[20]CHOI C,RHEE D E,OH Y.Information and capital flows revisited:the internet as a determinant oftransactions in financial assets[J].Economic modelling,2014,40(14):191-198.
[21]LENDLE A,OLARREAGA M,SCHROPP S,et al.There goes gravity:eBay and the death ofdistance[J].Economic journal,2016,126:406-441.
[22]白俊红,王星媛,卞元超.互联网发展对要素配置扭曲的影响[J].数量经济技术经济研究,2022(11):71-90.
[23]戴翔,刘梦,张为付.本土市场规模扩张如何引领价值链攀升[J].世界经济,2017,40(9):27-50.
[24]马述忠,房超.线下市场分割是否促进了企业线上销售——对中国电子商务扩张的一种解释[J].经济研究,2020,55(7):123-139.
[25]李川川,刘刚.数字经济创新范式研究[J].经济学家,2022(7):34-42.
[26]刘洋,董久钰,魏江.数字创新管理:理论框架与未来研究[J].管理世界,2020,36(7):198-217.
[27]陈晓红,李杨扬,宋丽洁,等.数字经济理论体系与研究展望[J].管理世界,2022(2):208-224.
[28]DOUGHERTY D,DUNNE D D.Digital science and knowledge boundaries in complex innovation[J].Organization science,2012,23(5):1467-1484.
[29]NAMBISAN S,LYYTINEN K,MAJCHRZAK A,et al.Digital innovation management:reinventing innovation management research in a digital world[J].MIS quarterly,2017,41(1):223-238.
[30]YOO Y,BOLAND R J,LYYTINEN K,et al.Organizing for innovation in the digitized world[J].Organization science,2012,23(5):1398-1408.
[31]田鸽,张勋.数字经济、非农就业与社会分工[J].管理世界,2022,38(5):72-84.
[32]CHERNOZHUKOV V,CHETVERIKOV D,DEMIRER M,et al.Double/ debiased machine learning for treatment and structural parameters[J].The econometrics journal,2018,21(1):1-68.
[33]YANG J C,CHUANG H C,KUAN C M.Double machine learning with gradient boosting and its applicationto the Big N audit quality effect[J].Journal of econometrics,2020,216(1):268-283.
[34]张涛,李均超.网络基础设施、包容性绿色增长与地区差距——基于双重机器学习的因果推断[J].数量经济技术经济研究,2023,40(4):113-135.
[35]韩慧霞,金泽虎,李静.贸易政策不确定性与高技术产业出口技术复杂度:理论机制与经验验证[J].经济问题探索,2022(5):169-190.
[36]江艇.因果推断经验研究中的中介效应与调节效应[J].中国工业经济,2022(5):100-120.
[37]杨小凯,张永生.新兴古典发展经济学导论[J].经济研究,1999(7):67-77.
[38]盛斌,毛其淋.贸易开放、国内市场一体化与中国省际经济增长:1985~2008年[J].世界经济,2011(11):44-66.
[39]钟敏,王增涛.数字经济与出口增长——基于中国城市和海关数据的研究[J].国际经贸探索,2022(9):21-37.
[40]FAN J T,TANG L X,ZHU W M,et al.The Alibaba effect:spatial consumption inequality and the welfaregains from e-commerce[J].Journal of international economics,2018,114(5):203-220.

Memo

Memo:
-
Last Update: 2023-10-20