|本期目录/Table of Contents|

[1]马飞,张东伟,陈龙,等.城市群城市韧性水平测度及障碍因子识别[J].长安大学学报(社科版),2024,(02):112-124.
 MA Fei,ZHANG Dongwei,CHEN Long,et al.Measurement of urban resilience level and identification of obstacle factors in urban agglomeration[J].Journal of Chang'an University(Social Science Edition),2024,(02):112-124.
点击复制

城市群城市韧性水平测度及障碍因子识别(PDF)
分享到:

《长安大学学报(社科版)》[ISSN:1671-6248/CN:61-1391/C]

卷:
期数:
2024年02期
页码:
112-124
栏目:
经济学·“数据要素×”研究
出版日期:
2024-04-20

文章信息/Info

Title:
Measurement of urban resilience level and identification of obstacle factors in urban agglomeration
文章编号:
1671-6248(2024)02-0112-13
作者:
马飞张东伟陈龙刘擎委笑琳
(长安大学 经济与管理学院,陕西 西安 710064)
Author(s):
MA Fei ZHANG Dongwei CHEN Long LIU Qing WEI Xiaolin
(School of Economics and Management, Chang'an University, Xi'an 710064, Shaanxi, China)
关键词:
城市韧性 BP神经网络模型 关中平原城市群 障碍因子 社会系统 数据壁垒 中心城市
Keywords:
urban resilience BP neural network model Guanzhong Plain urban agglomeration obstacle factor social system data barriers central city
分类号:
F127; F299.23
DOI:
-
文献标志码:
A
摘要:
城市群是城市发展较高层次的空间组成形式,其城市韧性的提升对建设韧性城市、促进城市群持续健康发展具有重要意义。为全面测度城市群城市韧性水平并识别其障碍因子,构建了城市群城市韧性评价指标体系,采用熵值法和BP神经网络模型对关中平原城市群2011—2020年各城市分系统韧性和复合系统进行分析,进一步使用障碍度模型对影响关中平原城市群城市韧性的障碍因子进行识别。研究发现,关中平原城市群城市韧性位于中等韧性水平,但总体呈上升趋势,其空间分布格局呈现出“东西低,中间高”的倒V形。具体而言,经济系统韧性以较低韧性水平和中等韧性水平为主,社会系统韧性以中等韧性水平和较高韧性水平为主,生态系统韧性以较高韧性水平为主,而基础设施系统韧性则主要分布在较低至较高韧性水平之间; 建成区绿化覆盖率和全社会用电量因子是影响关中平原城市群城市韧性提升的主要障碍因子; 从分系统来看,社会系统始终是影响关中平原城市群城市韧性提升的关键系统。研究表明,城市群应进一步加强城市之间的合作,共享信息资源,提高人们生活水平,加大城市基础设施建设力度,不断促进城市群协调发展。
Abstract:
Urban agglomeration represents the pinnacle of urban development spatially. Enhancing urban resilience is paramount for fostering resilient cities and nurturing sustainable, healthy urban agglomerations. This paper endeavors to comprehensively gauge the urban resilience level of urban agglomerations and pinpoint obstacle factors. To this end, an urban agglomeration urban resilience evaluation index system was constructed, employing the entropy method and the BP neural network model to assess the resilience and composite performance of each city subsystem within the Guanzhong Plain urban agglomeration from 2011 to 2020. Through systematic analysis, the obstacle degree model was utilized to identify factors impeding urban resilience in the Guanzhong Plain urban agglomeration. The study reveals that the urban resilience of the Guanzhong Plain urban agglomeration rests at a medium level, with a general upward trajectory. Spatially, its distribution pattern exhibits an inverted V-shape, with lower resilience in the east and west, and higher resilience in the middle. Economic system resilience leans towards lower and medium levels, while social system resilience tends to be medium to higher. Ecosystem resilience predominantly falls within higher levels, while infrastructure system resilience spans between lower and higher levels. Notably, the primary obstacles hampering urban resilience improvement in the Guanzhong Plain urban agglomeration are the green coverage rate of built-up areas and society-wide electricity consumption. From a subsystem perspective, the social system consistently emerges as the key constraint on urban resilience improvement in this agglomeration. To address these challenges, urban agglomerations should intensify inter-city cooperation, facilitate information sharing, uplift living standards, bolster urban infrastructure construction, and perpetually drive coordinated development across urban agglomerations.

参考文献/References:

[1] 应急管理部发布2022年全国自然灾害基本情况[EB/OL].(2023-01-13)[2024-01-10].https://www.gov.cn/xinwen/2023-01/13/content_5736666.htm.
[2]李克强.政府工作报告——2023年3月5日在第十四届全国人民代表大会第一次会议上[EB/OL].(2023-03-05)[2024-01-10].https://www.gov.cn/zhuanti/2023lhzfgzbg/mobile.htm.
[3]中共中央关于制定国民经济和社会发展第十四个五年规划和二〇三五年远景目标的建议[EB/OL].(2020-11-03)[2024-01-10].http://www.gov.cn/zhengce/2020-11/03/content_5556991.Htm.
[4]顾朝林.城市群研究进展与展望[J].地理研究,2011(5):771-784.
[5]王雨枫,曹洪军.中国城市群城镇综合发展测度及影响因素[J].中国软科学,2022(4):87-94,128.
[6]谢宝剑,李庆雯,杨智晨.中国城市群现代化的时空特征及分异机理[J].城市问题,2023(12):4-15.
[7]马艳梅,吴玉鸣,吴柏钧.长三角地区城镇化可持续发展综合评价——基于熵值法和象限图法[J].经济地理,2015(6):47-53.
[8]HOLLING C S.Resilience and stability of ecological systems[J].Annual review of ecology and systematics,1973(1):1-23.
[9]赵瑞东,方创琳,刘海猛.城市韧性研究进展与展望[J].地理科学进展,2020(10):1717-1731.
[10]陈胜利,王东.中国城市群经济韧性的测度、分解及驱动机制[J].华东经济管理,2022(12):1-13.
[11]MEEROW S,NEWELL J P.Spatial planning for multifunctional green infrastructure:growing resilience in Detroit[J].Landscape and urban planning,2017,159:62-75.
[12]CAVALLARO M,ASPRONE D,LATORA V,et al.Assessment of urban ecosystem resilience through hybrid social-physical complex networks[J].Computer-aided civil and infrastructure engineering,2014(8):608-625.
[13]石龙宇,郑巧雅,杨萌,等.城市韧性概念、影响因素及其评估研究进展[J].生态学报,2022(14):6016-6029.
[14]焦柳丹,王驴文,张羽,等.基于多木桶模型的长三角城市群韧性水平评估研究[J].世界地理研究,2024(1):96-106.
[15]LU H,ZHANG C,JIAO L,et al.Analysis on the spatial-temporal evolution of urban agglomeration resilience:a case study in Chengdu-Chongqing urban agglomeration,China[EB/OL].(2022-09-01)[2024-01-10].https://www.sciencedirect.com/science/article/pii/S2212420922003867.
[16]MU X,FANG C,YANG Z.Spatio-temporal evolution and dynamic simulation of the urban resilience of Beijing-Tianjin-Hebei urban agglomeration[J].Journal of geographical sciences,2022,32:1766-1790.
[17]陈晓红,娄金男,王颖.哈长城市群城市韧性的时空格局演变及动态模拟研究[J].地理科学,2020(12):2000-2009.
[18]朱金鹤,孙红雪.中国三大城市群城市韧性时空演进与影响因素研究[J].软科学,2020(2):72-79.
[19]熊先兰,易靖雯,潘宇晟.突发事件下科技支出对城市韧性的影响——以中国三大城市群为例[J].湖南大学学报(社会科学版),2023(2):59-67.
[20]HUANG J,SUN Z,DU M.Differences and drivers of urban resilience in eight major urban agglomerations:evidence from China[EB/OL].(2022-09-30)[2024-01-10].https://webofscience.clarivate.cn/wos/alldb/full-record/WOS:000856815000001.
[21]张悦倩,刘全龙,李新春.长三角城市群城市韧性与新型城镇化的耦合协调研究[J].城市问题,2022(5):17-27.
[22]吴菊平,潘玉君,骆华松,等.滇中城市群城市韧性时空格局演变及动态预测研究[J].生态经济,2023(8):95-105.
[23]张明斗,冯晓青.长三角城市群内各城市的城市韧性与经济发展水平的协调性对比研究[J].城市发展研究,2019(1):82-91.
[24]李娜,张广来,张宁.中国城市韧性水平综合评价及区域异质性分析[J].统计与决策,2023(19):117-120.
[25]周品.MATLAB神经网络设计与应用[M].北京:清华大学出版社,2013.
[26]范峻恺,徐建刚,胡宏.基于BP神经网络模型的海绵城市建设适宜性评价——以福建省长汀县为例[J].生态经济,2019(11):222-229.
[27]范峻恺,徐建刚.基于神经网络综合建模的区域城市群发展脆弱性评价——以滇中城市群为例[J].自然资源学报,2020(12):2875-2887.
[28]肖磊,梁佳欣,陆亚楠,等.中国城市群基础设施水平的区域差异与分布演进[J].统计与决策,2023(4):47-52.
[29]邢灿.关中平原城市群协同发展再提速[N].中国城市报.2023-08-28(A3).
[30]张中浩,聂甜甜,高阳,等.长三角城市群生态安全评价与时空跃迁特征分析[J].地理科学,2022(11):1923-1931.
[31]HILL E,CLAIR T S,WIAL H,et al.Economic shocks and regional economic resilience [M].Washington D. C.:Brookings Institution Press,2012.
[32]潘義承,田家华.城市韧性的时空分异及其影响因素:基于湖北省的实证[J].统计与决策,2023(23):57-62.
[33]周成,赵亚玲,张旭红,等.黄河流域城市生态韧性与效率时空演化特征及协调发展分析[J].干旱区地理,2023(9):1514-1523.
[34]李彦军,马港,宋舒雅.长江中游城市群城市韧性的空间分异及演进[J].区域经济评论,2022(2):88-96.
[35]吴文洁,黄海云.国家中心城市综合韧性评价及障碍因素分析[J].生态经济,2023(4):89-94,102.
[36]侯鑫宇,李雪铭,宋瑞,等.辽宁省数字经济与城市韧性协调发展时空演化特征与驱动力[J].资源开发与市场,2023(12):1584-1591.
[37]周霞,王佳.京津冀城市群城市韧性时空演变特征及空间差异研究——基于改进的PSR框架[J].资源开发与市场,2024(2):231-239.
[38]王彩丽,闫绪娴.成渝城市群城市韧性时空格局演变及障碍因子识别[J].重庆大学学报(社会科学版),2023(3):21-33.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2023-12-13
基金项目:陕西省自然科学基础研究计划项目(2022JM-423)
作者简介:马飞(1979-),男,陕西咸阳人,教授,博士研究生导师,管理学博士。
更新日期/Last Update: 2024-04-20