|本期目录/Table of Contents|

[1]徐亮,文婧,朱禹臣,等.“数据要素×”背景下大宗商品价格风险监管[J].长安大学学报(社科版),2024,(02):82-97.
 XU Liang,WEN Jing,ZHU Yuchen,et al.Commodity price risk supervision in the context of “data element ”[J].Journal of Chang'an University(Social Science Edition),2024,(02):82-97.
点击复制

“数据要素×”背景下大宗商品价格风险监管(PDF)
分享到:

《长安大学学报(社科版)》[ISSN:1671-6248/CN:61-1391/C]

卷:
期数:
2024年02期
页码:
82-97
栏目:
经济学·“数据要素×”研究
出版日期:
2024-04-20

文章信息/Info

Title:
Commodity price risk supervision in the context of “data element ×”
文章编号:
1671-6248(2024)02-0082-16
作者:
徐亮1文婧1朱禹臣2唐显博3
(1. 西南财经大学 工商管理学院,四川 成都 611130; 2. 澳门城市大学 商学院,澳门 999078; 3. 悉尼大学 文学与社会科学学院,亚新南威尔士州 悉尼 2006)
Author(s):
XU Liang1 WEN Jing1 ZHU Yuchen2 TANG Xianbo3
(1. School of Business Administration, Southwestern University of Finance and Economics,Chengdu 611130, Sichuan, China; 2. Faculty of Administration, City University of Macau, Macau 999078, China; 3. Faculty of Arts and Social Sciences,University of Sydney, Sydney 2006, NSW, Australia)
关键词:
“数据要素× 大宗商品 数字经济 风险监测 机器学习
Keywords:
“data element × commodity digital economy risk supervision machine learning
分类号:
F49
DOI:
-
文献标志码:
A
摘要:
随着数字经济时代的到来,大宗商品市场面临诸如价格波动大、供应链不确定性等风险。为研究“数据要素×”背景下大宗商品价格风险监管问题,对大宗商品的关键地位和政策举措、“数据要素×”对大宗商品市场的塑造力、大宗商品交易风险的挑战和前景展望、大宗商品价格风险监测的紧迫性进行分析。研究发现,数据分析和人工智能等新兴技术正在彻底改变中国大宗商品市场,大宗商品面临数据采集、价格数据标签需求、知识图谱构建、风险动态预警等四大核心问题。研究表明,应借助深度学习对多源异构数据进行采集、借助知识元的标引和集成技术建立数据标签、借助数据挖掘等构建知识图谱、借助分级校准建立风险动态预警系统,提高投资者和决策者在大宗商品市场中的风险应对能力。
Abstract:
With the advent of the era of digital economy, the commodity market faces risks such as significant price fluctuations and supply chain uncertainties. To examine the commodity price risk supervision challenges in the context of “data element ×”, this paper analyzes the pivotal role and policy measures concerning commodities, the influential force of “data element ×” on the commodity market, the challenges and prospects related to commodity trading risks, and the pressing need for commodity price risk supervision. The study reveals that emerging technologies such as data analysis and artificial intelligence are reshaping China's commodity market entirely. Commodities encounter four central issues: data collection, requirements for price data labeling, construction of knowledge maps, and dynamic risk alerts. Research suggests leveraging deep learning for gathering multi-source heterogeneous data, employing knowledge element indexing and integration technology to establish data labels, utilizing data mining for knowledge map construction, and implementing hierarchical calibration to establish a dynamic risk alert system. These measures aim to enhance the risk response capabilities of investors and decision-makers in commodity markets.

参考文献/References:

[1] CECCHETTI S G,BARSKY R,BERNANKE B,et al.Prices during the Great Depression:was the deflation of 1930 to 1932 unanticipated?[J].National bureau of economic research,1989(11):3174.
[2]BEASLEY A B.Overview:the oil shocks of the 1970s[EB/OL].(2016-05-15)[2024-01-22].https://energyhistory.yale.edu/the-oil-shocks-of-the-1970s/.
[3]MONASTEROLO I.Climate change and the financial system[J].Annual review of resource economics,2020(12):299-320.
[4]SCHOLES M S.Crisis and risk management[J].American economic review,2000(2):17-21.
[5]FRANK C.The financial crisis of 2008 and its impact on the Asian Rice Export Market[J].Journal of advances in economics and finance,2017(2):1-20.
[6]DEYUAN Z,ZHAO C,HU J Y.Impact of geopolitical risk on the volatility of natural resource commodity futures prices in China[J].Resources policy,2023(83):1-14.
[7]KUMAR A N V.Commodity derivative:a viable option for price risk management[EB/OL].(2015-12-04)[2023-12-20].http://gnanaganga.inflibnet.ac.in:8080/jspui/handle/123456789/1984.
[8]BESSEMBINDER H,LEMMON M.Equilibrium pricing and optimal hedging in electricity forward markets[J].The journal of finance,2002(57):1347-1382.
[9]CARTER D A,ROGERS D A,SIMKINS,et al.A review of the literature on commodity risk management[J].Journal of commodity markets,2017(8):1-17.
[10]MIRANDA P,JORGE C,PESCATORI A,et al.Monetary policy transmission through commodity prices[J].International monetary fund,2023(215):1-42.
[11]ZHENG D,ZHAO C,HU J.Impact of geopolitical risk on the volatility of natural resource commodity futures prices in China[J].Resources policy,2023(83):1-14.
[12]ROBERT H.The impact of economics on environmental policy[J].Journal of environmental economics and management,2000(3):375-399.
[13]SANTOS D A,MARQUES L.Big data analytics for supply chain risk management:research opportunities at process crossroads[J].Business process management journal,2000(4):1117-1145.
[14]RAMAKRISHNAN S,BUTT S,CHOHAN M A,et al.Forecasting Malaysian exchange rate using machine learning techniques based on commodities prices[EB/OL].(2017-07-01)[2023-12-20].https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8002544&tag=1.
[15]CHEN Z,GOH H S,SIN K,et al.Automated agriculture commodity price prediction system with machine learning techniques[J].Technology and engineering systems,2021(4):376-384.
[16]HU G,LIU S,WU G,HU P,et al. Economic policy uncertainty,geopolitical risks,and the heterogeneity of commodity price fluctuations in China——an empirical study based on TVP-SV-VAR model[J].Resources policy,2023(85):1-12.
[17]邱中行,徐小芳.地缘政治风险对大宗商品期货价格的影响研究[J].财富涌现与流转,2023,13(3):15-25.
[18]SHANG R A,CHEN Y C,LIAO H J.The value of participation in virtual consumer communities on brand loyalty[J].Internet research,2006(4):398-418.
[19]MARO F,SAPORITO Y F.Forecasting the term structure of commodities future prices using machine learning[J].Digital finance,2023(1):57-90.
[20]付星星,张军,秦岩,等.基于图深度学习的大宗商品价格预测研究[J].计算机应用与软件,2021(7):60-66.
[21]杨英晖.基于大宗商品价格指数的PPI预测分析研究——传统与机器学习预测方法的构建与比较[J].投资与合作,2023(6):202-204.
[22]许珠路,王兴芬,刘亚辉.融合CNN-BiLSTM-Attention的集成学习价格预测[J].计算机系统应用,2023(6):32-41.
[23]ATANU G,PUNDIT M.Economic growth in China and its impact on international commodity prices[J].International journal of finance & economics,2021(2):2776-2789.
[24]廖杉杉,鲁钊阳.农产品价格风险的成因及规避机制研究[J].农村经济,2013(3):27-30.
[25]黄莉群,官心果,钟宇.数字经济时代的数据安全研究——以金融行业为例[J].商业经济,2024(2):174-179.
[26]ATHIQUE A.Integrated commodities in the digital economy[J].Media,culture & society,2020,42(4):554-570.
[27]郭金涛.大宗商品贸易融资模式创新与风险防控[EB/OL].(2023-09-04)[2024-01-22].https://ojs.s-p.sg/index.php/fm/article/view/13734.
[28]TOMEK W G.Commodity futures prices as forecasts[J].Applied economic perspectives and policy,1997(1):23-44.
[29]GOLDFARB A.TUCKER C.Digital economics[J].Journal of economic literature,2019(1):3-43.
[30]CHEN Z,LIU Z,TEKA,H,et al.Smart money in China's A share market:evidence from big data[J].Research in international business & finance,2022(4):1-15.
[31]陈国青,曾大军,卫强,等.大数据环境下的决策范式转变与使能创新[J].管理世界,2020(2):95-105,220.
[32]MAURO A D,GRECO M,GRIMALDI M.A formal definition of big data based on its essential features[J].Library review,2016(3):122-135.
[33]顾冰清.大数据背景下人工智能在大宗商品期货高频套利中的应用[J].中国集体经济,2024(2):174-176.
[34]LI D F,LI Z R,SUN K.Development of a novel soft sensor with long short-term memory network and normalized mutual information feature selection[J].Mathematical problems in engineering,2020(11):1-11.
[35]BAKAS D,TRIANTAFYLLOU A.Commodity price volatility and the economic uncertainty of pandemics[J].Economics-letter,2020(8):1-14.
[36]张威波,胡艳英.基于高频数据的豆类期货套利实证研究[J].时代金融,2018(6):155-156,158.
[37]WU Y,ROSEA M,LILLICRAP T.Deep compressed sensing[EB/OL].(2019-05-18)[2023-12-22].http://proceedings.mlr.press/v97/wu19d.html.
[38]TEOH T T,RONG Z.Python for data analysis[M].Berlin:Springer,2022.
[39]BALTRUSAITIS T,AHUJA C,MORENCY L P.Multimodal machine learning:a survey and taxonomy[J].IEEE Transactions on pattern analysis and machine intelligence,2019(2):423-443.
[40]JELODAR H,WANG Y,YUAN C,et al.Latent dirichlet allocation(LDA)and topic modeling:models,applications,a survey[J].Multimedia tools & applications,2019(78):15169-15211.
[41]王保加,潘海为,谢晓芹,等.基于多模态特征的医学图像聚类方法[J].计算机科学与探索,2018(3):1-12.

相似文献/References:

[1]欧阳日辉.发挥“数据要素×”效应的逻辑与路径[J].长安大学学报(社科版),2024,(02):19.
 OUYANG Rihui.Logic and pathways to harness the “data element ” effect[J].Journal of Chang'an University(Social Science Edition),2024,(02):19.
[2]张会平,李晓利.“数据要素”视域下公共数据授权运营生态系统的培育路径[J].长安大学学报(社科版),2024,(03):60.
 ZHANG Huiping,LI Xiaoli.Authorized operation of public data in the perspective of “data element ”[J].Journal of Chang'an University(Social Science Edition),2024,(02):60.
[3]曾祥明,胡元,张秋月.“数据要素”赋能农民持续增收的机理、效应与优化策略研究[J].长安大学学报(社科版),2024,(03):76.
 ZENG Xiangming,HU yuan,ZHANG Qiuyue.Research on the mechanisms, effects, and optimization strategies of empowering the continuous increase of farmers' income with “data element ”[J].Journal of Chang'an University(Social Science Edition),2024,(02):76.
[4]任诗婷,曾燕.数据要素乘数效应的内涵与实现逻辑[J].长安大学学报(社科版),2024,(02):38.
 REN Shiting,ZENG Yan.Connotation and implementation logic of the multiplier effect of data elements[J].Journal of Chang'an University(Social Science Edition),2024,(02):38.
[5]李勇坚.“数据要素×”赋能制造业:理论逻辑与实现路径[J].长安大学学报(社科版),2024,(02):54.
 LI Yongjian.“Data element ” empowers manufacturing industry:theoretical logic and implementation path[J].Journal of Chang'an University(Social Science Edition),2024,(02):54.
[6]王磊.从“数据要素×”看中国数智化的法治路径[J].长安大学学报(社科版),2024,(02):71.
 WANG Lei.Looking at China's rule of law path to digital intelligence from the perspective of “data element ”[J].Journal of Chang'an University(Social Science Edition),2024,(02):71.
[7]欧国立,王俊伟.“数据要素×”背景下交通领域新基建投融资分析[J].长安大学学报(社科版),2024,(02):98.
 OU Guoli,WANG Junwei.Analysis of new infrastructure investment and financing in the transportation field in the context of “data element ”[J].Journal of Chang'an University(Social Science Edition),2024,(02):98.
[8]任力,章阳.“数据要素”背景下文化产业数字化转型的理论逻辑、现实问题与对策[J].长安大学学报(社科版),2024,(03):17.
 REN li,ZHANG Yang.Theoretical logic, practical problems, and coping strategies of digital transformation of cultural industry in the context of “data element ”[J].Journal of Chang'an University(Social Science Edition),2024,(02):17.
[9]朱东波,杨志丽.“数据要素”背景下数智化赋能工业绿色发展转型的机制、路径与政策研究[J].长安大学学报(社科版),2024,(03):32.
 ZHU Dongbo,YANG Zhili.Research on the mechanisms, paths and policies of digital intelligence empowering industrial green development transformation in the context of “data element ”[J].Journal of Chang'an University(Social Science Edition),2024,(02):32.
[10]陈升,张岸.数据要素在现代经济中引领创新发展的作用机制与挑战[J].长安大学学报(社科版),2024,(03):47.
 CHEN Sheng,ZHANG An.Functioning mechanisms and challenges of data elements in leading innovation in modern economy[J].Journal of Chang'an University(Social Science Edition),2024,(02):47.

备注/Memo

备注/Memo:
收稿日期:2024-02-03
基金项目:国家自然科学基金项目(71971171); 大商所“百校万才”工程研究项目(DECYJ202301)
作者简介:徐亮(1983-),男,四川乐山人,教授,博士研究生导师,管理学博士。
更新日期/Last Update: 2024-04-20