|本期目录/Table of Contents|

[1]李勇坚.“数据要素×”赋能制造业:理论逻辑与实现路径[J].长安大学学报(社科版),2024,(02):54-70.
 LI Yongjian.“Data element ” empowers manufacturing industry:theoretical logic and implementation path[J].Journal of Chang'an University(Social Science Edition),2024,(02):54-70.
点击复制

“数据要素×”赋能制造业:理论逻辑与实现路径(PDF)
分享到:

《长安大学学报(社科版)》[ISSN:1671-6248/CN:61-1391/C]

卷:
期数:
2024年02期
页码:
54-70
栏目:
经济学·“数据要素×”研究
出版日期:
2024-04-20

文章信息/Info

Title:
“Data element ×” empowers manufacturing industry:theoretical logic and implementation path
文章编号:
1671-6248(2024)02-0054-17
作者:
李勇坚12
(1. 中国社会科学院 财经战略研究院,北京 100006; 2. 中国社会科学院大学 应用经济学院,北京 102488)
Author(s):
LI Yongjian12
(1. Institute of Financial Strategy, Chinese Academy of Social Sciences, Beijing 100006, China; 2. School of Applied Economics, Chinese Academy of Social Sciences, Beijing 102488, China)
关键词:
“数据要素× 数据要素乘数效应 制造业 数据化 数据生态 工业互联网 数据文化 数据安全
Keywords:
“data element × the multiplier effect of data elements manufacturing digitization data ecology industrial Internet data culture data security
分类号:
F49; F424
DOI:
-
文献标志码:
A
摘要:
数据要素在工业制造领域具有很大的应用空间,《“数据要素×”三年行动计划(2024—2026年)》将工业制造作为发挥数据要素乘数效应的重点领域。从理论上看,数据要素在制造业领域的乘数效应发挥,其理论基础是数据化理论、工业互联网理论、数据生态理论、数据驱动决策理论、商业模式创新理论。数据要素赋能制造业,可以从制造业的研发、生产制造与服务能力等流程全面应用数据要素实现,也可以从数据要素为制造业提供模拟、仿真、优化、控制、预测等维度来实现。在政策上,要强化数据文化,推动数据互通、共享、复用; 在制造业数据相关的底层技术方面加大研发投入,开发出适用制造业数据开发的通用工具; 推动算力、算法、存储等相关配套设施与数据要素协同,支持数据要素相关的数据经纪人、数商、交易服务机构等协同发展,建立健全良好的数据生态; 推动建设国家制造业数据中心,完善国家、地方、行业、团体的分级体系,对公共数据、企业数据、个人数据形成区别化的分级分类制度; 强化制造业数据的安全保护标准,引导、推动行业协会等社会组织加强数据安全自律,完善数据安全体系建设。
Abstract:
The application potential of data elements in industrial manufacturing is vast. The “Data Element ×” Three-Year Action Plan(2024—2026)identifies industrial manufacturing as a key area to leverage the multiplier effect of data elements. Drawing from the digitization theory, industrial Internet theory, data ecology theory, data-driven decision-making theory, and business model innovation theory, it elucidates how the multiplier effect of data elements can be played out in manufacturing. Empowering the manufacturing industry entails a comprehensive integration of data elements across various stages, including R&D, manufacturing, and service capabilities, as well as leveraging simulation, optimization, control, prediction, and other dimensions. Policy-wise, fostering a robust data culture and facilitating interoperability, sharing, and reuse is imperative. Additionally, there is a need to augment R&D investments in foundational technologies pertinent to manufacturing data and to develop versatile tools conducive to data development in manufacturing. Enhancing computing power, algorithms, storage, and allied infrastructure to synergize with data elements is essential, as is nurturing a sound ecosystem involving data brokers, merchants, and transaction service entities. Establishing a robust national manufacturing data center and refining classification systems for public, enterprise, and personal data at national, local, industrial, and organizational levels are vital steps. Strengthening security standards for manufacturing data, guiding, and encouraging self-discipline among social organizations such as industry associations to enhance data security are also crucial for fortifying data security systems.

参考文献/References:

[1] 李杰.工业大数据:工业4.0时代的工业转型与价值创造[M].北京:机械工业出版社,2015.
[2]李杰.从大数据到智能制造[M].上海:上海交通大学出版社,2016.
[3]World Economic Forum & Boston Consulting Group.Share to gain:unlocking data value in manufacturing[R].Geneva:World Economic Forum,2020.
[4]DONOVAN P O,LEAHY K,BRUTON K,et al.Big data in manufacturing:a systematic mapping study[J].Journal of big data,2015(2):2-22.
[5]GUANX,QIN X.The data factor's dual attribute and its interaction effects[J].China political economy,2022(1):40-51.
[6]吴海军,郭琎.数据要素赋能制造业转型升级[J].宏观经济管理,2023(2):35-41.
[7]周铃煖,余柳仪,陈远方,等.数据要素对制造业高质量发展的影响研究[J].湖南理工学院学报(自然科学版),2023(4):65-72.
[8]王德祥.数字经济背景下数据要素对制造业高质量发展的影响研究[J].宏观经济研究,2022(9):51-63.
[9]史丹,孙光林.大数据发展对制造业企业全要素生产率的影响机理研究[J].财贸经济,2022(9):85-100.
[10]田时中,许玉久,范宇翔.数据要素新动能对制造业高质量发展的影响研究[J].统计与信息论坛,2023(8):55-66
[11]李治国,王杰.数字经济发展、数据要素配置与制造业生产率提升[J].经济学家,2021(10):41-50.
[12]MALAK H A.Digitization vs digitalization:what's the difference?[EB/OL].(2023-06-18)[2024-01-07].https://theecmconsultant.com/digitization-vs-digitalization/.
[13]BRESNAHAN T F,TRAJTENBERG M.General purpose technologies:engines of growth?[J].Journal of econometrics,1995(1):83-108.
[14]唐国锋,冯子钰,李丹,等.基于文献计量分析的工业互联网综述与展望[J].计算机集成制造系统,2023(9):3216-3228.
[15]ABDULLA A,JANISZEWSKA-KIEWRA E,PODLESNY J.Data ecosystems made simple[EB/OL].(2021-03-08)[2024-01-08].https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/tech-forward/data-ecosystems-made-simple.
[16]STOBIERSKI T.5 key elements of a data ecosystem[EB/OL].(2021-03-02)[2024-01-08].https://online.hbs.edu/blog/post/data-ecosystem.
[17]BRYNJOLFSSON E,HITT L,KIM H.Strength in numbers:how does data-driven decisionmaking affect firm performance?[EB/OL].(2011-04-22)[2024-01-02].https://aisel.aisnet.org/cgi/viewcontent.cgi?article=1150&context=icis2011.
[18]XU X.Research prospect:data factor of production[J].Journal of internet and digital economics,2021(1):64-71.
[19]BRYNJOLFSSON E,MCELHERAN K.The rapid adoption of data-driven decision-making[J].The American economic review,2016(5):133-139.
[20]CENAMOR J,FRISHAMMAR J.Openness in platform ecosystems:innovation strategies for complementary products[J].Research policy,2021(1):104148.
[21]李勇坚.数字化推动制造业与服务业融合发展[J].新型工业化,2023(11):25-34.
[22]REN S,ZHANG Y,LIU Y,et al.A comprehensive review of big data analytics throughout product lifecycle to support sustainable smart manufacturing:a framework,challenges and future research directions[J].Journal of cleaner production,2019(210):1343-1365.
[23]CUI Y,KARA S,CHANK C.Manufacturing big data ecosystem:a systematic literature review[J].Robotics and computer-integrated manufacturing,2020,62:101861.
[24]STEPANOV I.Introducing a property right over data in the EU:the data producer's right-an evaluation[J].International review of law,computers & technology,2020(1):65-86.
[25]GEBAUER H,FLEISCH E,LAMPRECHT C,et al.Growth paths for overcoming the digitalization paradox[J].Business horizons,2020(3):313-323.
[26]OECD POLICY RESPONSES TO CORONAVIRUS(COVID-19).One year of SME and entrepreneurship policy responses to COVID-19:lessons learned to “build back better”[EB/OL].[2021-04-08][2024-01-02].https://www.oecd.org/coronavirus/policy-responses/one-year-of-sme-and-entrepreneurship-policy-responses-to-covid-19-lessons-learned-to-build-back-better-9a230220/.
[27]HU R,NGOBI L.Securing the supply chain[EB/OL].(2020-09-17)[2024-01-04].https://www.accenture.com/us-en/insights/consulting/securing-the-supply-chain.

相似文献/References:

[1]欧阳日辉.发挥“数据要素×”效应的逻辑与路径[J].长安大学学报(社科版),2024,(02):19.
 OUYANG Rihui.Logic and pathways to harness the “data element ” effect[J].Journal of Chang'an University(Social Science Edition),2024,(02):19.
[2]张会平,李晓利.“数据要素”视域下公共数据授权运营生态系统的培育路径[J].长安大学学报(社科版),2024,(03):60.
 ZHANG Huiping,LI Xiaoli.Authorized operation of public data in the perspective of “data element ”[J].Journal of Chang'an University(Social Science Edition),2024,(02):60.
[3]曾祥明,胡元,张秋月.“数据要素”赋能农民持续增收的机理、效应与优化策略研究[J].长安大学学报(社科版),2024,(03):76.
 ZENG Xiangming,HU yuan,ZHANG Qiuyue.Research on the mechanisms, effects, and optimization strategies of empowering the continuous increase of farmers' income with “data element ”[J].Journal of Chang'an University(Social Science Edition),2024,(02):76.
[4]任诗婷,曾燕.数据要素乘数效应的内涵与实现逻辑[J].长安大学学报(社科版),2024,(02):38.
 REN Shiting,ZENG Yan.Connotation and implementation logic of the multiplier effect of data elements[J].Journal of Chang'an University(Social Science Edition),2024,(02):38.
[5]王磊.从“数据要素×”看中国数智化的法治路径[J].长安大学学报(社科版),2024,(02):71.
 WANG Lei.Looking at China's rule of law path to digital intelligence from the perspective of “data element ”[J].Journal of Chang'an University(Social Science Edition),2024,(02):71.
[6]徐亮,文婧,朱禹臣,等.“数据要素×”背景下大宗商品价格风险监管[J].长安大学学报(社科版),2024,(02):82.
 XU Liang,WEN Jing,ZHU Yuchen,et al.Commodity price risk supervision in the context of “data element ”[J].Journal of Chang'an University(Social Science Edition),2024,(02):82.
[7]欧国立,王俊伟.“数据要素×”背景下交通领域新基建投融资分析[J].长安大学学报(社科版),2024,(02):98.
 OU Guoli,WANG Junwei.Analysis of new infrastructure investment and financing in the transportation field in the context of “data element ”[J].Journal of Chang'an University(Social Science Edition),2024,(02):98.
[8]任力,章阳.“数据要素”背景下文化产业数字化转型的理论逻辑、现实问题与对策[J].长安大学学报(社科版),2024,(03):17.
 REN li,ZHANG Yang.Theoretical logic, practical problems, and coping strategies of digital transformation of cultural industry in the context of “data element ”[J].Journal of Chang'an University(Social Science Edition),2024,(02):17.
[9]朱东波,杨志丽.“数据要素”背景下数智化赋能工业绿色发展转型的机制、路径与政策研究[J].长安大学学报(社科版),2024,(03):32.
 ZHU Dongbo,YANG Zhili.Research on the mechanisms, paths and policies of digital intelligence empowering industrial green development transformation in the context of “data element ”[J].Journal of Chang'an University(Social Science Edition),2024,(02):32.
[10]陈升,张岸.数据要素在现代经济中引领创新发展的作用机制与挑战[J].长安大学学报(社科版),2024,(03):47.
 CHEN Sheng,ZHANG An.Functioning mechanisms and challenges of data elements in leading innovation in modern economy[J].Journal of Chang'an University(Social Science Edition),2024,(02):47.

备注/Memo

备注/Memo:
收稿日期:2024-01-10
基金项目:中国社会科学院创新工程项目(2024CJY0103)
作者简介:李勇坚(1975-),男,研究员,教授,博士研究生导师,经济学博士。
更新日期/Last Update: 2024-04-20