|本期目录/Table of Contents|

[1]范丽莉,张翔,叶志鹏,等.加快公共数据资源开发利用的理论阐释与发展进路笔谈[J].长安大学学报(社科版),2025,(01):1-37.
 FAN Lili,ZHANG Xiang,YE Zhipeng,et al.Discussion on the theoretical explanation and development path ofaccelerating the development and utilization ofpublic data resources[J].Journal of Chang'an University(Social Science Edition),2025,(01):1-37.
点击复制

加快公共数据资源开发利用的理论阐释与发展进路笔谈(PDF)
分享到:

《长安大学学报(社科版)》[ISSN:1671-6248/CN:61-1391/C]

卷:
期数:
2025年01期
页码:
1-37
栏目:
马克思主义理论研究
出版日期:
2025-02-25

文章信息/Info

Title:
Discussion on the theoretical explanation and development path ofaccelerating the development and utilization ofpublic data resources
文章编号:
1671-6248(2025)01-0001-37
作者:
范丽莉1张翔2叶志鹏3武小龙4沈费伟5董鹏6
1. 长安大学 人文学院,陕西 西安 710064; 2. 厦门大学 公共事务学院,福建 厦门 361005; 3. 华东师范大学 公共管理学院,上海 200062; 4. 南京航空航天大学 人文与社会科学学院,江苏 南京 211106; 5. 杭州师范大学 公共管理学院,浙江 杭州 311121; 6. 清华大学 公共管理学院,北京 100084
Author(s):
FAN Lili1 ZHANG Xiang2 YE Zhipeng3 WU Xiaolong4 SHEN Feiwei5 DONG Peng6
1.School of Humanities,Chang’an University,Xi’an 710064,Shaanxi,China;2.School of Public Affairs,Xiamen University,Xiamen361005,Fujian,China;3.School of Public Administration,East China Normal University,Shanghai200062,China;4.School of Humanities and Social Sciences,Nanjing University of Aeronautics and Astronautics,Nanjing211106,Jiangsu,China;5.School of Public Administration,Hangzhou Normal University,Hangzhou311121,Zhejiang,China;……
关键词:
公共数据 公共数据开发 人工智能 数字政府 数据要素化
Keywords:
public data public data development artificial intelligence digital government data factorization
分类号:
F124; D621
DOI:
-
文献标志码:
A
摘要:
加快公共数据资源开发利用具有战略、理论、生态和发展逻辑,包括深化数据要素配置改革、加强资源管理以及鼓励应用创新等重要任务,它反映了行政权威与部门诉求、行政逻辑与市场逻辑以及数据安全与技术支持之间的关系,凸显出“方法”意识在公共数据资源治理中的重要地位。人工智能技术能够有效赋能公共数据治理,该过程需要技术、组织和条件保障。加快公共数据资源开发利用需要遵循坚持市场驱动与政府调控、纵向统筹与横向协调、创新引领与规范约束、发展优先与安全保障的原则,做到优化开发机制、破除信息壁垒以及加强风险管理。公共数据资源开发能够提升数字政府建设绩效,其中包含网络贯通、数据上云、算法治理和终端服务等举措,能够分别实现数字政府建设的数据“连接”、业务“赋能”、主体“协同”以及组织“重构”,应健全数据基础制度、高效供给数据资源、强化数据应用场景、推动数据跨域合作以及加强数据安全保障。加快公共数据资源开发利用需要推进数据要素化治理,当前面临着体系不健全、技术体系难以支撑、市场体系不成熟的困境,应充分发挥政府调控作用,推动技术创新发展以及优化市场调节作用。
Abstract:
Accelerating the development and utilization of public data resources has strategic, theoretical, ecological, and developmental significance. It involves deepening the reform of data factor allocation, strengthening resource management, and encouraging application innovation. This process reflects the interplay between administrative authority and departmental demands, administrative logic and market dynamics, as well as data security and technical support. It underscores the crucial role of methodological awareness in public data resource governance. Artificial intelligence technology can effectively enhance public data governance, but this requires technical, organizational, and structural support. To accelerate the development and utilization of public data resources, it is essential to balance market-driven approaches with government regulation, ensure both vertical and horizontal coordination, foster innovation while maintaining regulatory constraints, and prioritize development without compromising security, while optimizing development mechanisms, eliminating information barriers, and strengthening risk management. The development of public data resources can significantly enhance digital government performance by improving network interconnectivity, cloud-based data management, algorithmic governance, and terminal services. These improvements facilitate data “integration”, business “empowerment”, stakeholder “collaboration”, and organizational “restructuring” within digital government systems. Efforts should focus on enhancing foundational data infrastructure, ensuring efficient data resource supply, expanding application scenarios, promoting cross-sectoral data cooperation, and strengthening data security. Promoting the governance of data factors is essential for accelerating the development and utilization of public data resources. However, current challenges include an underdeveloped regulatory framework, insufficient technical support systems, and an immature market ecosystem. To overcome these obstacles, government regulation should be leveraged to drive technological innovation, facilitate development, and optimize market mechanisms.

参考文献/References:

[1] 中共中央办公厅 国务院办公厅关于加快公共数据资源开发利用的意见[EB/OL].(2024-10-09)[2024-11-10].https://www.gov.cn/gongbao/2024/issue_11666/202410/content_6983475.html.[2]习近平.习近平谈治国理政:第4卷[M].北京:外文出版社,2022.[3]黄凯南.数据生产要素论对经济学理论创新的重要影响[EB/OL].(2024-01-16)[2024-11-16].http://theory.people.com.cn/n1/2024/0116/c40531-40159889.html.[4]蔡继明.构建公平与效率相统一的数据要素按贡献参与分配的制度——解读 “数据二十条”[EB/OL].(2023-03-17)[2024-11-04].https://www.ndrc.gov.cn/xxgk/jd/jd/202303/t20230317_1351338_ext.html.[5]邱泽奇.数字生态与数据要素市场体系顶层设计[EB/OL].(2024-08-13)[2024-10-26].https://www.cssn.cn/skgz/bwyc/202408/t20240813_5771662.shtml.[6]杨艳,林凌.数据要素高质量供给:内涵解析、困境挑战与规制设计[J].电子政务,2024(11):15-26.[7]欧阳日辉.发挥“数据要素×”效应的逻辑与路径[J].长安大学学报(社会科学版),2024,26(2):19-37.[8]冯永琦,林凰锋.数据要素赋能新质生产力:理论逻辑与实践路径[J].经济学家,2024(5):15-24.[9]中国信息通信研究院.数据价值化与数据要素市场发展报告(2024)[EB/OL].(2024-09-26)[2024-11-29].http://www.caict.ac.cn/kxyj/qwfb/ztbg/202409/P020240926365684089988.pdf.[10]复旦大学数字与移动治理实验室.2024中国地方公共数据开放利用报告[EB/OL].(2024-10-23)[2024-11-15].https://www.xdyanbao.com/doc/uagk5oh4vk?userid=57555079&bd_vid=10896936058364181608.[11]方锦程,刘颖,高昊宇,等.公共数据开放能否促进区域协调发展?——来自政府数据平台上线的准自然实验[J].管理世界,2023(9):124-142.[12]江小涓.大数据时代的政府管理与服务:提升能力及应对挑战[J].中国行政管理,2018(9):6-11.[13]徐慧娜,郑磊,PARDO T.国外政府数据开放研究综述:公共管理的视角[J].电子政务,2013(6):2-7.[14]郑磊,侯铖铖.信息传递、价值适配与降本协调:公共数据资源开发利用中的供需鸿沟研究[J].电子政务,2024(10):32-40.[15]郑大庆,黄丽华,郭梦珂,等.公共数据资源治理体系的演化模型:基于整体性治理的建构[J].电子政务,2022(5):79-92.[16]王伟玲.加快实施数字政府战略:现实困境与破解路径[J].电子政务,2019(12):86-94.[17]戴昕.数据界权的关系进路[J].中外法学,2021,33(6):1561-1580.[18]胡业飞,孙华俊.政府信息公开与数据开放的关联及治理逻辑辨析——基于“政府-市场-社会”关系变迁视角[J].中国行政管理,2021(2):31-39.[19]何玉长,王伟.数据要素市场化的理论阐释[J].当代经济研究,2021(4):33-44.[20]赵正,杨铭鑫,易成岐,等.数据财政视角下公共数据有偿使用价值分配的理论基础与政策框架[J].电子政务,2024(2):21-32.[21]中共中央党史和文献研究院.习近平关于网络强国论述摘编[M].北京:中央文献出版社,2021.[22]谭海波,范梓腾,杜运周.技术管理能力、注意力分配与地方政府网站建设——一项基于TOE框架的组态分析[J].管理世界,2019,35(9):81-94.[23]薛澜,赵静.走向敏捷治理:新兴产业发展与监管模式探究[J].中国行政管理,2019(8):28-34.[24]孟庆国,王友奎,王理达.公共数据开放利用与授权运营:内涵、模式与机制方法[J].中国行政管理,2024,40(9):43-53,159.[25]门钰璐,孟天广.数字治理生态视角下公共数据授权运营结构与机制分析——对杭州市的案例研究[J].电子政务,2025(3):62-75.[26]叶志鹏,李朔严.制度化的政商关系何以形成?——基于M市的历史性分析[J].社会学研究,2023,38(5):67-88,227-228.[27]大数据技术标准推进委员会.面向人工智能的数据治理实践指南(1.0)[EB/0L].(2024-06-29)[2024-11-14].https://www.tc601.com/research-report/66f920af3ab0428ca4019162.[28]胡业飞.责任配置、风险共担与激励相容:中国地方公共数据授权运营的治理机制问题研究[J].电子政务,2024(10):22-31.[29]郁建兴,高翔,王诗宗,等.数字时代的公共管理研究范式革命[J].管理世界,2023(1):104-116.[30]江小涓,宫建霞,李秋甫.数据、数据关系与数字时代的创新范式[J].中国社会科学,2024(9):185-203,208.[31]潘宏亮,赵兰香,叶璐.我国数据要素发展水平的测度及时空演进研究[J].科学学研究,2025,43(1):205-216.[32]沈费伟,诸靖文.数据赋能:数字政府治理的运作机理与创新路径[J].政治学研究,2021(1):104-115,118.[33]杜超,赵雪娇.基于“政府即平台”发展趋势的政府大数据平台建设[J].中国行政管理,2018(12):146-148.[34]曼纽尔·卡斯特.网络社会的崛起[M].夏铸九,王志弘,译.北京:社会科学文献出版社,2000.[35]王宛璐.江苏政务服务网正式上线“不见面”审批让百姓“少跑腿”[EB/OL].(2017-06-29)[2024-11-10].https://www.cac.gov.cn/2017-06/29/c_1121228200.htm?from=timeline.[36]YANG T M,MAXWELL T A.Information-sharing in public organizations:a literature review of interpersonal,intra-organizational and inter-organizational success factors[J].Government information quarterly,2011(2):164-175.[37]埃米尔·迪尔凯姆.社会学方法的准则[M].狄玉明,译.北京:商务印书馆,1995.[38]张成福,李昊城,边晓慧.跨域治理:模式、机制与困境[J].中国行政管理,2012(3):102-109.[39]沈费伟.技术嵌入与制度吸纳:提高政府技术治理绩效的运作逻辑[J].自然辩证法通讯,2021(2):80-86.[40]冯洋,王姿惠.企业数据要素市场化配置:逻辑理路、发展困境与制度构建[J].西南金融,2024(5):73-84.[41]董康.数据要素流通的困境与对策研究[J].人文杂志,2024(2):131-140.[42]刘金钊,汪寿阳.数据要素市场化配置的困境与对策探究[J].中国科学院院刊,2022,37(10):1435-1444.[43]潘爱玲,李广鹏.数字经济时代企业数据价值释放的路径、挑战与对策[J].理论与改革,2024(4):163-174.[44]史丹,何辉,薛钦源.数据分类分级制度与数据要素市场化:作用机制、现实困境和推进策略[J].福建论坛(人文社会科学版),2024(4):58-76.[45]孟天广,门钰璐.公共数据授权运营的地方探索及对策建议[J].前线,2024(7):39-42.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2024-11-15
基金项目:陕西省社会科学基金专项项目(2023SJ13)
作者简介:范丽莉(1978-),女,陕西礼泉人,教授,管理学博士。
更新日期/Last Update: 2025-02-25